
.WORLDS LARGEST- SELLING fLECTRONICSMAGAZINE'-- :_FEBRUÁ'

u tér wait ith
No Movi 9:Parts..

Shortwave Newscasts
English

Build a Mmiomputer,:
Part i"

vq -

.
.r°

:" ug of WI"
El.ectronics Ge 6

I.._.
TES1REPQ

T".

Máántz 4210
Receiver .r á

-

Garrard Zé[.ó Í00
Turntable

OrtofonVMS-20Er°3. orrr

Phóño Cartridge

lafayette com-Phone ?a,:
CBTrarisceivér G°

_Data echñólogy
Models 2Q 21-D

-- ,:ºüsés:MOSSensór.=_- =.
Man s: _

l
_,

OigitaY
¡.,

^ .Fw ¡r
2

62156 YJ 3;ar NYS
80 400113116AW 014,9

7 ar 113NY8Y0 1
Z0

Q1 1. 9L8dtl 060N0149 1184 961£0£

i

AmericanRadioHistory.Com

e°"°TMEALTAIR 8800
1 JUCO PUTER

aaar Twa
Practical use of the computer, including programming

LAST MONTH, we discussed the
various subassemblies used in

the basic Altair 8800 computer, went
into details on how it is assembled,
and listed a few applications. Here, we
will describe a test program to be used
in checking operation and then focus
on practical uses and go through a

software example to familiarize you
with some operating procedures.

Test Program. The following simple
program is used for initial testing of
the computer's operation. It also illus-
trates how a program is loaded and
run. The selected program will add
two numbers stored at address loca-
tions 128 and 129 and store the result
at address location 130. The proce-
dure is as follows:

1 Set the power switch to ON and
momentarily toggle the RESET switch.
(Note: Excluding the power switch, all
bottom -row switches on the front
panel are spring -loaded, momentary -
action types. The switches automati-
cally return to their center -off posi-
tions when released from either of
their operate positions. When in-
structed to operate any of the bottom
row switches, momentarily throw it to
the position indicated and release it.)

2 Set address switches AO through
A15 all to the 0 positions (down). Op-
erate the EXAMINE switch, which
should cause address LED's AO

c

Mi Rz 141 /44
z'

di ~41,R.1R..a !_,.R_ ó.c',a...-R1s#,.1 IV.o-P 9w"º

BY H. EDWARD ROBERTS AND WILLIAM YATES

through A15 to extinguish to indicate
that location 0 is ready. (Some of the
data LED's, DO through D7, might be
illuminated, indicating the current
contents at location 0.)

3 Next, store the load accumulator
instruction at location 0 by using the
binary number for 58 (00111010). Set
this binary input up by using switches
DO through D7, with a 1 represented
by the switch in the up position and a 0
with the switch in the down position.
Hence the switch sequence for
00111010 would be: D7 down, D6
down, D5 up, D4 up, D3 up, D2 down,
D1 up, DO down. Store this number at
location 0 by operating the DEPOSIT
switch. The DO through D7 LED's
should now match these settings, with
a lighted LED indicating al and adark-
ened LED indicating a 0. None of the
AO -A15 LED's should be on indicating
location 0. The load accumulator in-
struction now tells the computer that
the next two entries will be an address
number (16 bits). Upon program ex-
ecution, the data stored at that ad-
dress number will be transferred to the
accumulator.

4 Address numbers, such as ad-
dress 128, are expressed in 16 -bit bi-
nary format. The least -significant bits
(last eight) are stored in the first mem-
ory location following the load ac-
cumulator instruction, while the
most -significant bits are stored in the

II

--«;-:..--- * !
4P

second memory location. Set DO
through D7 for 10000000 (128) and
operate the DEPOSIT NEXT switch. This
number is now stored, in binary form,
at memory location 1. (AO LED should
be lit indicating location 1.) Set DO
through D7 all to 0 and operate the
DEPOSIT NEXT switch. The all -zero bi-
nary number is now stored at memory
location 2 (Al LED is lit) and the com-
puter has been instructed to put the
contents of address 128 into the ac-
cumulator.

5 To add a second number to the
current number stored in the ac-
cumulator, the computer must be in-
structed to transfer the current
number to one of the general-purpose
registers. In this example, we will use
register B. The instruction used is
"move A to B," where A is the ac-
cumulator. The code for this instruc-
tion is 01000111, set up with switches
DO through D7. Operate the DEPOSIT

NEXT switch. The instruction "move A
to B" is now stored at memory loca-
tion 3. (Al and AO lit.)

6 Now, instruct the computer to
load the data from address 129 into
the accumulator. This procedure is
identical to that outlined in steps 3 and
4 above. Set switches DO through D7
for 00111010 and operate the DEPOSIT
NEXT switch. The load accumulator in-
struction is now stored at memory lo-
cation 4. (A2 lit.) Set DO through D7 for

_ ; ,.,4 rs' . . 1.4
+:i

56
POPULAR ELECTRONICS

AmericanRadioHistory.Com

10000001 (129) and operate the DE-

POSIT NEXT switch to store this number
at memory location 5. (A2, AO lit) Then
set DO through D7 all to 0 and operate
the DEPOSIT NEXT switch to store the
all -zero number at memory location 6

(A2, Al lit).

7 Store the add instruction at mem-
ory location 7 by setting DO through
D7 for 10000000 (128) and operating
the DEPOSIT NEXT switch. When exe-

cuted, this instruction adds the
number in the accumulator to the
number stored in register B and
places the result in the accumulator
(A2, Al, AO lit).

8 To store the result at address 130,

first store the instruction at memory
location 8 by setting DO through D7 for
00110010 and operating the DEPOSIT

NEXT switch (A3 lit). Set DO through D7
for 10000010 and operate the DEPOSIT

NEXT switch. The least -significant
eight bits of address 129 are now
stored at memory location 9 (A3, AO

lit) Set DO through D7 to 0 and oper-
ate the DEPOSIT NEXT switch. The
most -significant eight bits of address
129 are now stored at memory loca-
tion 10 (A3, Al lit).

9 A program that adds the contents
of address 128 to the contents of ad-
dress 129 and stores the result in ad-
dress 130 has now been loaded into
the computer. With the use of a

"jump" instruction, you can now
create a program loop that will direct
the computer back to memory loca-
tion 0 and allow repeating this addi-
tion procedure continuously for as
long as desired. Store the jump in-
struction at memory location 11 by
setting DO through D7 for 11000011

and operating the DEPOSIT NEXT switch
(A3, Al, AO lit). Set DO through D7 to 0

and operate the DEPOSIT NEXT switch
twice. The 16 -bit address 0 is now
stored at memory locations 12 and 13

03, A2, AO lit).
Before we can run this program, we

_ 41o 47e. ,

a

°

`F
. jE - fi

+'
l iLt . .+ l.} ii

have to load the two numbers we want
added into addresses 128 and 129. For

example, if we wanted to add 12 to 8,

the procedure would be as follows:
Set address switches AO through

A15 for 0000000010000000 (128) and

operate the EXAMINE switch (A7 lit). Set
DO through D7 for binary 12

(00001100) and operate the DEPOSIT

switch (A7 still lit). Set DO through D7
for binary 8 (00001000) and operate
the DEPOSIT NEXT switch. The binary
numbers for 12 and 8 are now stored at

address locations 128 and 129, re-

spectively (A7, AO lit).
Set address switches AO through

A15 to 0 and operate the EXAMINE

switch (all A LED's are off). Operate
the RUN switch, and the program will
execute at a rate of about 30,000 times
per second. Operate the STOP switch.
Set the address switches to address
130 (10000010) and operate the
EXAMINE switch. LED's DO through b7
will display the sum of the two num-
bers added, which is 20, in binary for-
mat (00010100).

Basics of Programming. If you
have rever done any programming, it

may seem a little mysterious at first,
but the basic ideas of programming

GLOSSARY OF COMPUTER JARGON

Access time - Time interval between
the instant at which information is called
for storage and the instant at which de-
livery is complete.
Accumulator - Part of the logical -
arithmetic unit of a computer used for
intermediate storage, to form algebraic
sums, or other intermediate operations.
Address - Label, name, or number
identifying a register, location, or unit
where information is stored.
Assembler - Translates input sym-
bolic codes into machine instructions.
Bit - Abbreviation of binary digit; a

single character in a binary number.
Buffer- Isolating circuit used to avoid
reaction of a driven circuit upon its driv-
ing circuit.
Byte - Group of binary digits usually
operated upon as a unit. Usually shorter
than a word.
Clock - Time -keeping device used to
synchronize the computer.
Data - Basic elements of information
which can be processed or produced by
a computer.
Hold - Function of retaining informa-
tion in one storage device after transfer-
ring it to another device, in contrast to
clear.
Instruction - Coded program step
that tells the computer what to do for a

single operation in a program.
Interrupt - Break in the normal flow
of a system or routine such that the

flow can be resumed from that point at
a later time.
Jump - Depart from the normal se-

quence of executing instruction in a

computer (synonymous with branch).
Memory- Storage. A device that holds
information that can be extracted at a

later time.
Processor- Device capable of receiv-
ing data, manipulating it, supplying re-

sults usually of an internally stored pro-
gram.
Programming - Art of reducing the
plan for the solution of a problem to

machine -sensible instructions.
Register - Device for the temporary
storage of one or more words to facili-
tate arithmetical, logical, or transferral
operations.
Stack- Portion of a computer memory
and/or registers used to temporarily hold
information.
Subroutine - Set of instructions in

machine code to direct the computer to
carry out a well-defined mathematical or
logical operation; a part of a routine.
Word- Set of characters that occupies
one storage location and is treated by
the computer as a unit and is transported
as such. Word lengths are fixed or vari-
able, depending on the particular com-
puter being used.

Definitions were extracted from "Computer Dictio-
nary" by Charles J. Sippl and Charles P. Sippl, pub-
lished by Howard W. Sams & Co.. Inc., The Bobbs-
Merrill Co. Inc.. Number 20943. 484 pages. $8.95 (in
Canada $11.95).

Shown at far left is the display board
atop the control board, with cables
that connect to other boards: The central
processor unit is shown in the center,
and the controlboarai at near left. Not
shown is memory board, which holds 171C's.

FEBRUARY 1975 57

AmericanRadioHistory.Com

MACHINE INSTRUCTIONS

Instruction Binary Code Octal Comment
(for instruction)

IN 6 11011011 (IN) 333,006 Bring data from input 6
and store in register A
(accumulator).

MOV B,A 01 (MOVE) 107 Take A and move its
000 (B) contents to B.
111 (A)

IN 30 11011011 (IN) 323,036 Bring input 30 into
00011110 (30) accumulator

ADD B 10000 (ADD) 200 Add contents of A to B.
000 (B) Put results in A.

OUT 128 11010011 (OUT) 323,200 Transmit contents of
10000000 (128) accumulator to output 128.

are really very straightforward and
easy to master. The procedures that
are always used consist of the follow-
ing:

Defining the Problem. This is by
far the hardest part of the program-
ming. Don't worry about the compu-
ter or the computer language when
doing this part of the preparation.
Simply decide what is required to do
the job you want to accomplish.

Establishing an Approach. The
computer and computer language
have nothing to do with this step,
either. It involves outlining a step-by-
step procedure to achieve the desired
results and getting it down on paper.

Writing the Program. Once you
are familiar with programming, you
will find that this step is the simplest.
It is merely a matter of translating
step 2 into the appropriate language.

There are many books available on
programming. Some of them are
quite good and are particularly useful
for learning techniques such as flow
programming, looping, etc. However,
in essence, they can all be boiled
down to the three steps above.

Software Example. To get a feel
for what programming the Altair 8800
is like, let's go through a sample
program, which is similar to the test
program that we first went through to
check out the computer operation.
Assume that we want to take the data
available from input channel 6 and
input channel 30 and add them, plac-
ing the result in output channel 128.
The machine instructions are shown
in the box.

The first instruction simply stores
the data from channel 6 in register A
(the accumulator). The next instruc-
tion moves this data from register A to
register B. This clears A for the next

input. The third instruction brings the
data from input channel 30 into the A
register. The fourth instruction adds
the -contents of register A (data from
channel 30) to register B (data from
channel 6) and puts the results back
into register A. The final instruction
transmits the answer from A to output
channel 128. Total computer time
used to perform this operation with
the Altair 8800 is 18 microseconds. To
put it another way, the computer
could perform 56,000 of these opera-
tions in one second.

The instructions could be entered
into the processor in one of three
ways. The first and easiest would be
with the use of an assembler. This is
essentially a piece of software that
converts alphanumeric symbols to
machine language (binary code). For
example, the assembler would con-
vert our first instruction (IN 6) to the
correct binary code. The problem
with using an assembler is that you
need a computer terminal for an input
device and the assembler itself re-
quires about 6000 words of memory
storage. If extensive program de-
velopment is to take place, the as-
sembler is a good tool to have.

The next easiest method of enter-
ing the instructions is with the use of

EXPANDING THE COMPUTER
In describing the assembly of the

Altair 8800 Minicomputer in last
month's article, it was noted that
the interior of the cabinet provides
plenty of room for expansion. The
room can be used to add many
functions to the basic computer.
For example, the present memory
board in the Altair 8800 can be ex-
panded with the addition of three
256 -word memories (Kit 8802 -MS
available from the manufacturer,
MITS at $34 per 256 -word memory).
Further additions require an ex-
pansion mother board having four
connectors that can accommodate
any four memory or input-output
(1-O) cards. This expansion board
(Kit 8800-EB) is available for $44,
while a 4K dynamic memory card
(Kit 8840 -MC) costs $198. Various
other kits-a vectored interrupt
card and a real-time clock, among
them-are also available.

the Very Low Cost Terminal featured
in the December 1974 issue of
POPULAR ELECTRONICS. With this ter-
minal, the instructions could be en-
tered by using the octal code. The
procedure would be to write the pro-
gram in assembly language and then
enter the corresponding code for
each instruction. This system, while
not being as fast as the use of an as-
sembler is less expensive.

The third method, using front panel
entry, is of course inexpensive but
time consuming.

This has been only a brief summary
of the programming procedures for
the computer. Complete program-
ming information is provided with the
Intel 8080 integrated circuit and with
the Altair 8800 computer kit.

58
POPULAR ELECTRONICS

AmericanRadioHistory.Com

